Modular curves of composite level

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modular Curves of Infinite Level

The goal of this course is to investigate an object which might be called X(p∞), and which appears as the inverse limit of the classical modular curves X(p). Informally, X(p∞) ought to classify elliptic curves E together with a Zp-basis for the Tate module Tp(E). (A disclaimer is in order, lest I be accused of false advertising: We won’t be studying all of X(p∞), but rather a piece of it corres...

متن کامل

Semistable models for modular curves of arbitrary level

We produce an integral model for the modular curve X(Np) over the ring of integers of a sufficiently ramified extension of Zp whose special fiber is a semistable curve in the sense that its only singularities are normal crossings. This is done by constructing a semistable covering (in the sense of Coleman) of the supersingular part of X(Np), which is a union of copies of a Lubin-Tate curve. In ...

متن کامل

Aws Lecture Notes: Modular Curves at Infinite Level

These lectures concern the arithmetic of modular curves, and in particular the geometry of integral models of modular curves in the neighborhood of their singular points. These singularities only appear modulo p. If X is a modular curve and x is a singular point, then the nature of the singularity is measured by the completed local ring ÔX,x. Let us first review the basics of integral models of...

متن کامل

Modular Curves

H is the upper half plane, a complex manifold. It will be helpful to interpret H in multiple ways. A lattice Λ ⊂ C is a free abelian group of rank 2, for which the map Λ ⊗Z R → C is an isomorphism. In other words, Λ is a subgroup of C of the form Zα⊕Zβ, where {α, β} is basis for C/R. Two lattices Λ and Λ′ are homothetic if Λ′ = θΛ for some θ ∈ C∗. This is an equivalence relation, and the equiva...

متن کامل

Modular Curves, Modular Surfaces, and Modular Fourfolds

We begin with some general remarks. Let X be a smooth projective variety of dimension n over a field k. For any positive integer p < n, it is of interest to understand, modulo a natural equivalence, the algebraic cycles Y = ∑ j mjYj lying on X, with each Yj closed and irreducible of codimension p, together with codimension p + 1 algebraic cycles Zj = ∑ i rijZij lying on Yj , for all j. There is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Arithmetica

سال: 2005

ISSN: 0065-1036,1730-6264

DOI: 10.4064/aa118-2-3